Each column in the table from Statistics Canada represents a list of *one-variable statistics*.

- every *entry* (or number) in the column is measuring the same, single, unknown.
- In tabular form, it can be difficult to identify trends in the data. - need to sort and organize it.
- two ways 1) Frequency Distribution Table
 - 2) Hist ogr am (Gr aph)

Frequency Distribution

By sorting data into intervals (or classes) and counting the number of entries that fall into each interval, it becomes easier to make a graph which allows us to quickly spot trends.

Rules:

- 1. stick to 5-20 intervals. To do this, first find the range of data, and then divide that number by both 5 and 20 to determine how big each interval should be.
- 2. Make sure that the intervals don't overlap. If they do, you may end up counting some entries twice. To avoid this, add a decimal place to the start and end values of each interval.

<u>Ex 1</u>

a) Make a frequency distribution table to represent the number of wet days in Canadian cities by looking at the Stats Canada table.

b) Make a hist ogram using your frequency distribution.

Step 1: Find the range. Range= Highest # - Lowest # =217-109 =108

Interval Length:

5 intervals (bars) $= \frac{108}{5}$ = 21.6

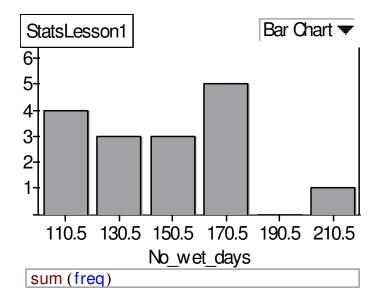
20 intervals (bars) $= \frac{108}{20}$ = 9

- want intervals anywhere from 9 units to 21.6 units wide.
- To make counting easier, we choose any number between 9 and 21.6 that is easy to count by.

 \therefore good interval length = 20 (this could be any other number such as 10 or 15)

Step 2: Avoid overlap. Add a decimal to the start and end values of each interval.

- To choose a starting interval, be sure that it includes the lowest number (in this case 109).
 - ∴ good starting interval is 100.5-120.5 (note: this is 20 units long with an extra decimal place added)


Interval	Tally	Frequency	Cumulative Frequency
100.5-		4	4
120.5			
120.5-	111	3	7
140.5			
140.5-		3	10
160.5			
160.5-		5	15
180.5			
180.5-		0	15
200.5			
200.5-		1	16
220.5			

Step 3: Sort the data in a table

Note: *Keep counting your intervals by twenty until you've included the last number (in this case, 217).

*A cumulative frequency column in a good way to double check that you didn't miss any entries.

b) Organize data in graphical form.

Notes: *The y-axis is frequency

*The x-axis represents what ever you are counting

*Unless your interval starts at zero, you should include a break in your graph

*It is often easier to write the midpoint of each interval rather than the start and end points

*There are no spaces between the bars since the intervals are **continuous**, this means that there is no break in the x-values